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A large class of complications of mathematical physics, applied mathematics 
and engineering are formulated in the form of differential equations, beside 
with few additional conditions. This paper comprises of an ordinary 
differential equation (O.D.E) and Volterra Integral equation (V.I.E) with bulge 
and logarithmic functions. We will use Laplace transform, Inverse Laplace 
transform and convolution theorem where it will be needed to find the 
precise solution of O.D.Es and V.I.Es. Also, we will compare it with the 
numerical solution using Euler’s method and Simpson’s quadrature rule and 
lastly we will represent it with the help of graph. 
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1. Introduction 

*Integral equations are significant in numerous 
applications. Problems in which integral equations 
are faced include radiative energy transfer and the 
oscillation of a string, membrane, or axle. Oscillation 
problems may also be solved as differential 
equations. Song and Kim (2014) discovered the 
solution of Volterra integral equation of the second 
kind by using the Elzaki transform. Mirzaee (2012) 
introduced a numerical method for solving linear 
Volterra integral equations of the second kind based 
on the adaptive Simpson’s quadrature method. They 
also derived a simple and efficient matrix 
formulation using Chebyshev polynomials as trial 
functions. 

Many researchers have established the different 
numerical methods to solve the Volterra integral 
equation by using different polynomials (Saran et al., 
2000). O.D.Es occur in many scientific disciplines, 
e.g., in chemistry, physics, biology, and economic. 
Differential equation explains the changes in 
population, movement of heat, vibration of spring, 
how radioactive material decays and many other 
things. These are the ordinary ways to describe 
different things in this universe. 
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To find the analytical solution of the differential 
equation we can use integration method but 
unluckily in different practical applications like 
engineering and science, we have to find their 
numerical solutions rather than analytical solutions. 

In this paper we have discussed solution of 
ordinary differential equations and Volterra integral 
equation with different functions (like Bulge and 
Logarithmic function) by using Laplace transform. 
Examples are also there to show the efficiency of 
these methods. We have used here Laplace 
transform, inverse Laplace transform and 
convolution theorem to find the exact solution of 
O.D.Es with bulge and logarithmic function. Euler’s 
method is used here to find the numerical solution of 
O.D.Es. In the end we will compare the results of 
numerical and exact solutions using graphs.  

2. Preliminaries  

We start our study by giving the definitions of 
O.D.E, V.I.E, Laplace transform, convolution theorem 
and Simpson’s quadrature rule, which can be used in 
this study.  

2.1. The Laplace transform 

Let f(t) be continuous function of t defined over 
the interval [0, ∞), then the Laplace transform 
(Henry et al., 2004) of f(t) is a function F(s) of 
another variable s defined by: 
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F(s) = ∫ e−st∞

0
 f(t)dt = lim

T→∞
∫ e−st f(t)dt 

T

0
 

2.2. The Volterra integral equations 

Integral equations given in (Lomen and Mark, 
1988) are a special kind of integral equations. One 
type has the form 

 

y(t) = f(t) + ∫ k(t − τ)y(τ)d(τ)
t

0
  

 

where f and k are known and y is to be determined. 

2.3. The convolution theorem  

The convolution of two functions f(t) and g(t) 
denoted f(t)∗g(t), is given by f(t) ∗ g(t) =

∫ f(t)g(t − τ)dτ,
t

0
 whenever the integral is defined. 

For this paper, we study the case that f(t) is a bulge 

function which is given by f(t) = e− 
(t−l)2

2  where 𝑙 is a 
positive constant (Lomen and Mark, 1988). 

2.4. Simpson’s quadrature rule 

The Simpson’s quadrature rule can be used for 
the numerical solutions of the Volterra integral 
equation of the first kind. If N is even, then Simpson’s 
quadrature rule may be applied to each subinterval 
[xi,   x2i+1] individually yields the approximation 

 

S (h) = 
h

3
[f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + ⋯ +

2f(b − 2h) + 4f(b − h) + f(b)]   
 

for the complete interval (Phillips and Taylor, 1973; 
Mirzaee, 2012). The error of S (h) is 

 

E S (h) =∫f(x) dx-s (h) = 
L5

90
 ∑ f 4(ξi),      ξi =

N

2

i=0  [xi,   x2i+1] 

3. Solution of O.D.E using Laplace transform 

3.1. Lemma 

The L.T. of the Bulge function e− 
(t−l)2

2  is expressed 
by (Harsa and Pothat, 2015) 

 

L{e− 
(t−l)2

2 } = e− 
l2

2 [
1

s
+

−1+l2

s3 +
l(s2−3+l2)

s4 ]                                  (1) 

 
Proof: The Taylor series expression ex is of the form: 

 

ex = ∑
xn

n!
∞
n=0 = 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ ⋯ , 

 

therefore by substituting with x = −
(t−l)2

2
 , we obtain 

 

e−
(t−l)2

2 = e−
l2

2 + e−
l2

2 lt + e−
l2

2 (−
1

2
+

l2

2
) t2 +  e−

l2

2 (−
1

2
+

l3

2
) t3 + O(t4).  

 

By taking L.T. of above equation and neglecting 
higher order terms and using the fact that the L.T. is 
linear, we derived 

L{ e−
(t−l)2

2 } = e−
l2

2 [
1

s
+

−1+l2

s3
+

l(s2−3+l2)

s4
].                                (2) 

3.2. Theorem 

The linear O.D.E with the Bulge function 
  

dy

dt
− 1 + y = e−

(t−l)2

2                                                                       (3) 

 

and solution can be written as: 
 

y(t) = e−t e−
l2

2 [1 + lt +
t2

2
(−1 + l2) +

t3l

6
(−3 + l2) + e

l2

2 ]  

                                       (4) 

Proof: Eq. 3 can be written as: 
 

y′ − 1 + y = e−
(t−l)2

2    

 
By taking L.T. of above equation  
 

sY(s) − y (0) + Y(s) −
1

s
 = e−

l2

2 [
1

s
+

−1+l2

s3
+

l(s2−3+l2)

s4
]       (5) 

 
By putting initial condition y (0) =0 
 

(s + 1)Y(s) −
1

s
= e−

l2

2 [
1

s
+

−1+l2

s3 +
l(s2−3+l2)

s4 ]  

Y(s) =
e

−
l2

2

(s+1)
[

1

s
+

−1+l2

s3 +
l(s2−3+l2)

s4 +
e

l2

2

s
].                                (6) 

 
Now by taking ILT and using convolution 

theorem 
 

y(t)=e−te−
l2

2 [1 + lt +
t2

2
(−1 + l2) +

t3l

6
(−3 + l2) + e

l2

2 ].  (7) 

3.3. Comparison of approximate and exact 
solution 

In above Eq. 3 with initial condition y (0) =0, l =
2, h = 0.1, Eq. 7 is its exact solution and by applying 
Euler’s method we will obtain its numerical solution. 
Table 1 and Fig. 1 show the comparative analysis. 

3.4. Theorem  

The linear O.D.E with the Bulge function 
 

dy

dt
+ y = e−

(t−l)2

2                                                                               (8) 

 

and solution can be written as: 
 

y(t)=e−t e−
l2

2 [1 + lt +
t2

2
(−1 + l2) +

t3l

6
(−3 + l2) + 2e

l2

2 ](9) 

 
Table 1: Approximate and exact and solution 

t Exact solution Approximate solution Error 
0.1 1.1353 1.1353 0 
0.2 1.0536 1.0647 0.0111 
0.3 0.9805 1.0022 0.0217 
0.4 0.9148 0.9469 0.0321 
0.5 0.8554 0.8977 0.0423 
0.6 0.8015 0.8538 0.0523 
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Fig. 1: Approximate and exact and solution for l = 2, h =

0.1 
 

Proof: Eq. 8 can be written as: 
 

y′ + y = e−
(t−l)2

2   
 

by taking L.T. of above equation  
 

sY(s) − y (0) + Y(s)=e−
l2

2 [
1

s
+

−1+l2

s3 +
l(s2−3+l2)

s4 ]              (10) 

 
by putting initial condition y (0) = 2 

 

(s + 1)Y(s) = e−
l2

2 [
1

s
+

−1+l2

s3 +
l(s2−3+l2)

s4 ]+2 

Y(s)=
e−

l2

2

(s+1)
[

1

s
+

−1+l2

s3 +
l(s2−3+l2)

s4 ] +
2

s+1
                                (11) 

 
now by taking ILT and using convolution theorem 
 

 y(t)=e−te−
l2

2 [1 + lt +
t2

2
(−1 + l2) +

t3l

6
(−3 + l2) + 2e

l2

2 ].  

               (12) 

3.5. Comparison of approximate and exact 
solution 

In above Eq. 8 with initial condition y (0) =2 and 
by taking 𝑙 = 2, h = 1 in Euler’s method we will 
obtain its numerical solution. Table 2 and Fig. 2 
show the comparative analysis. 

 
Table2: Approximate and exact and solution 

t Exact solution Approximate solution Error 
1 0.9764 0.9394 0.037 
2 0.5210 0.5689 0.0479 
3 0.2983 0.3292 0.0309 
4 0.1713 0.1677 0.0036 
5 0.0957 0.0872 0.0085 
6 0.0516 0.0465 0.0051 
7 0.0269 0.0242 0.0027 
8 0.0135 0.0122 0.0003 

4. The solution of Volterra integral equation of 
the first kind with bulge function using the 
Laplace transform   

4.1. Theorem 

The solution of the VIE of the first kind  
 

∫ y(t − η)eaηt

0
dη=e−

(t−l)2

2                                                           (13) 

 

can be expressed as 
  

  y(t) =  e−
l2

2 [6 − 6a + 3(a − al2 − 3l + l3)t2 +
6(−1 + l2 − al)t +  l(6 + 3at3 − l2at3)].  
 
Proof: By taking L.T to the Eq. 13, 
 

L{∫ y(t − η)eaηt

0
dη} = L {e−

(t−l)2

2 }.   

 

 
Fig. 2: Approximate and exact and solution for l = 2, h = 1 

 

By applying the convolution theorem, it will 
become  

 

L{y(t)∗ et}=  L {e−
(t−l)2

2 }                                                              (14) 

 
again by using convolution theorem and lemma (3.1) 

 

L {y (t)} L {et} = e−
l2

2 [
1

s
+

−1+l2

s3
+

l(s2−3+l2)

s4
]. 

 
or 

 

L{y(t)}(
1

s−1
) =e−

l2

2 [
1

s
+

−1+l2

s3 +
l(s2−3+l2)

s4 ].                            (15) 

 
Then after interpretation of Eq. 15 it will become 
 

L{y (t)} = e−
l2

2 [1 +
−a+l

s
+

−1+l2−al

s2 +
a−al2−3l+l3

s3 +
al(3−l2)

s4 ].  

               (16) 

Now by taking ILT of Eq. 16 we will obtain 
 

y(t)= e−
l2

2 [6 − 6a + 3(a − al2 − 3l + l3)t2 + 6(−1 + l2 −
al)t + l(6 + 3at3 −  l2at3)]                   (17) 

4.2. Theorem 

We can express the solution of the V.I.E of the 
first kind  
 

∫ et−xt

0
g(x)dx= e−

(t−l)2

2                                                                 (18) 

 
and solution can be written as: 
 

g(t)= 
e−

l2

2

6
[6t + 6(−1 + l) + 6t(−1 − l + l2) + 3t2(1 − l2 −

3l + l3) + t3(3l − l3)]   

 
Proof: Applying L.T. to the Eq. 18, 

0.8
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L {∫ et−xt

0
g(x) dx} = L { e−

(t−l)2

2 } 

by using the convolution theorem, it will become  
 

L{g(t)*et}= L{ e−
(t−l)2

2 }                                                                (19) 

 
again by using convolution theorem and lemma 3.1 
we get 
 

L {g (t)} L {et} = e−
l2

2 [
1

s
+

−1+l2

s3
+

l(s2−3+l2)

s4
]  

 
or 

 

L{g(t)}(
1

s−1
)=e−

l2

2 [
1

s
+

−1+l2

s3
+

l(s2−3+l2)

s4
].                             (20) 

 
Then after simplification of Eq. 20 will become 
 

L {g (t)} = e−
l2

2 [1 +
−1+l

s
+

−1−l+l2

s2
+

1−l2−3l+l3

s3
+

3l−l3

s4
].  

 
Now by taking ILT to above equation to obtain 

 

g (t) =  e−
l2

2 [t + (−1 + l) + t(−1 − l + l2) +
t2

2
(1 − l2 −

3l + l3) +
t3

6
(3l − l3)].  

 
or  
 

g(t)= 
e

−
l2

2

6
[6t + 6(−1 + l) + 6t(−1 − l + l2) + 3t2(1 − l2 −

3l + l3) + t3(3l − l3)].                       (21)  

5. Solution of ordinary differential equation with 
a logarithmic function  

5.1. Lemma  

The Laplace transform of the logarithmic function 
ln t  is expressed by: 

 

L{ln t} =  [−
11

6s
+

3

s2 −
3

s3 +
2

s4 ]                                                (22) 

 
Proof: 

 

ln t =  ∑ (−1)n−1 (t−1)n

n
∞
n=1   

ln t = t − 1 +
(t−1)2

2
+

(t−1)3

3
+

(t−1)4

4
+ ⋯ … … … .. 

0 ≤ t ≤ 2 

 
by neglecting higher order terms 

 

ln t =−
11

6
+ 3t −

3t2

2
+

t3

3
                                                    (23) 

 
now by taking Laplace transform of Eq. 23 

 

L{lnt} = −
11

6s
+

3

s2 −
3

s3 +
2

s4.  

5.2. Theorem 

The linear O.D.E with the logarithmic function 
 

dy

dt
− 1 + y = ln t                                                                          (24) 

 

with initial condition y (0) = 0. and solution can be 
written as:  
 

y(t) = e−t(−
5

6
+ 3t −

3t2

2
+

t3

3
)                                                (25) 

 
Proof: Eq. 24 can be written as: 

 
y′ − 1 + y = ln t  

 
By taking L.T of above equation and by using 

lemma 5.1   
 

sY(s) − y (0) + Y(s) −
1

s
=−

11

6s
+

3

s2 −
3

s3 +
2

s4                       (26) 

 
by applying initial condition y (0) = 0  
 

 (s + 1)Y(s) −
1

s
= −

11

6s
+

3

s2
−

3

s3
+

2

s4
  

or  
 

𝑦(𝑠) =
1

(s+1)
(−

11

6s
+

3

s2
−

3

s3
+

2

s4
+

1

s
)                                     (27) 

 
Now by taking ILT and using convolution 

theorem 
 

y(t) = e−t(−
5

6
+ 3t −

3t2

2
+

t3

3
).                                               (28) 

5.3. Comparative analysis of approximate and 
exact solution 

In above equation (24) with initial condition y (0) 
= 0 and by taking h = 1 we solve it by Euler’s method 
to get numerical solution. Table 3 and Fig. 3 show 
the comparative analysis. 

 
Table3: Approximate and exact and solution 

t Exact solution Approximate solution Error 
1 -2.3964 -2.2964 0 
2 -5.4542 -5.1901 -0.2641 
3 -9.3547 -8.8083 -0.5464 
4 -13.7594 -12.8310 -0.9284 
5 -18.3852 -17.0002 -1.385 
6 -22.9746 -21.0868 -1.8878 

 

 
Fig. 3: Approximate and exact and solution of example for 

 h = 1 

5.4. Theorem  

The linear O.D.E with the logarithmic function 

-23

-18

-13

-8

-3

2

1 2 3 4 5 6

y(
t)

t

Exact solution Approximate solution
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dy

dt
+ y = ln t                                                                                  (29) 

 

with initial condition y (0) =2. And solution can be 
written as: 

  

y(t) = e−t(
1

6
+ 3t −

3t2

2
+

t3

3
)                                                    (30) 

 

Proof: Eq. 29 can be written as y′ + y = ln t by 
taking L.T of above equation and using lemma 5.1  

 

sY(s) − y (0) + Y(s) = −
11

6s
+

3

s2
−

3

s3
+

2

s4
                           (31) 

 

by putting initial condition y (0) =2       
 

(s + 1)Y(s) = −
11

6s
+

3

s2 −
3

s3 +
2

s4 + 2  

Y(s) =
1

(s+1)
(−

11

6s
+

3

s2
−

3

s3
+

2

s4
+

1

s
+ 2)                              (32) 

 

now by taking ILT and using convolution theorem 
 

y(t) = e−t(−
11

6
+ 3t − 3t2 +

t3

3
+ 2) or      

 

 y(t) = e−t(
1

6
+ 3t −

3t2

2
+

t3

3
)                                                   (33) 

5.5. Comparative analysis of approximate and 
exact solution 

In above Eq. 29 with initial condition y (0) =2 and 
by taking h = 1.02 in Euler’s method we will get 
numerical solution. Table 4 and Fig. 4 show the 
comparative analysis. 

 
Table 4: Approximate and exact and solution 

t Exact solution Approximate solution Error 
1 0.1839 0.1655 0.0184 

1.02 0.0933 0.0881 0.0052 
1.04 0.0068 0.0141 0.0073 
1.06 -0.0739 -0.0551 0.0188 
1.08 -0.1476 -0.1183 0.0293 
1.1 -0.2138 -0.1748 0.039 

1.12 -0.2722 -0.2245 0.0477 
1.14 -0.3226 -0.2673 0.0553 
1.16 -0.3652 -0.3032 0.062 
1.18 -0.4004 -0.3325 0.0679 
1.2 -0.4286 -0.3556 0.073s 

 

 
Fig. 4: Approximate and exact and solution for  h = 1.02 

6. Solution of Volterra integral equation of the 
second kind with a logarithmic function  

6.1. Theorem  

We can express the solution of the V.I.E of the 
second kind  

u(t) − ∫ sin(t − y)
t

0
u(y)dy = ln t.                                          (34) 

 
is expressed by: 
 

u(t) = − 
11

6
+ 3t −

29

12
t2 +

5

6
t3 −

t4

8
+

t5

60
.   

 

Proof: First we will apply the L.T to the Eq. 34, 
 

L{u(t)} − L {∫ sin(t − y)
t

0
u(y) dy } = L {ln t}; 

 
by using the convolution theorem, it will become 
 
 L{u(t)} −L{y (t)∗ sin t} = L{ln t}.                                           (35) 

 
Again by applying convolution theorem and 

lemma 5.1, Eq. 35 will become  
 

L{u(t)} − L{u(t)} (
1

s2+1
)=−

11

6s
+

3

s2
−

3

s3
+

2

s4
     

 

or    
 

L {u(t)}[1 −
1

s2+1
]=−

11

6s
+

3

s2
−

3

s3
+

2

s4
                                    (36) 

 
then after simplification of Eq. 36 will become 

 

L {u (t)} =[
−11

6s
+

3

s2 −
29

6s3 +
5

s4 −
3

s5 +
2

s6] ;                              (37) 

 
now by taking ILT to Eq. 37 to obtain 

 

u(t) = − 
11

6
+ 3t −

29

12
t2 +

5

6
t3 −

t4

8
+

t5

60
.                             (38) 

 

6.2. Comparative analysis of approximate and 
exact solution 

We will obtain exact solution of Eq. 34 by using 
Simpson’s quadrature formula taking h=0.01. Table 
5 and Fig. 5 show the comparative analysis. 

 
Table 5: Approximate and exact and solution 

t Exact solution Approximate solution Error 
0 -1.8333 -1.8333 0 

0.01 -1.8037 -1.8036 -0.0001 
0.02 -1.7749 -1.7745 -0.0005 
0.03 -1.7468 -1.7460 -0.0008 
0.04 -1.7195 -1.7181 -0.0014 
0.05 -1.6930 -1.6908 -0.0022 
0.06 -1.6673 -1.6641 -0.0032 
0.07 -1.6422 -1.6379 -0.0043 
0.08 -1.6180 -1.6124 -0.0056 

7. Conclusion 

In this work, we have studied the V.I. equations of 
the first and second kind and O.D.E with the bulge 

function e−
(t−l)2

2  and logarithmic function. To solve 
the numerical solution of the V.I.E we have used here 
Simpson’s quadrature rule and to solve the O.D.E we 
have used Euler’s method. We have found the exact 
solution by applying the L.T. There is also the 
comparison of exact and approximate solutions 
through graphical representation. 
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Fig. 5: Approximate and exact and solution h = 0.01 
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